MHT-CET MATHEMATICS PAPER - 2022

11TH AUGUST (SHIFT - 2)

Time : 90 Minutes No. of Questions : 50 Marks : 100

1. 4 3 4 π \int_{π} x x $1 + \cos$ d $\frac{1}{x}$ is equal to (a) $-2\sqrt{2}$ (b) 2 (c) $-2 - 2\sqrt{2}$ (d) -2 2. If $\tan^{-1}\left(\frac{1}{1+x}\right) = \frac{1}{2}$ 1 1 $\left(\frac{1-x}{1}\right) =$ J $\left(\frac{1-x}{1}\right)$ L ſ $^{+}$ $\overline{}$ x $\left(\frac{x}{x}\right) = \frac{1}{2} \tan^{-1}x$, then x has the value (a) 3 (b) 1 (c) $\overline{\sqrt{3}}$ 1 (d) $\sqrt{3}$

3. If $p : \forall n \in IN$, $n^2 + n$ is an even number $q: \forall n \in \mathbb{N}, n^2 - n$ is an odd numer, then the truth values of $p \wedge q$, $p \vee q$ and $p \rightarrow q$ are respectively

- (a) F, T, F (b) F, F, T (c) T, T, F (d) F, T, T
- 4. If the function $f(x) = x^3 3(a-2)x^2 + 3ax + 7$, for some $a \in IR$ is increasing in (0, 1) and decreasing in [1, 5), then a root of the equation $\sqrt{(x-1)^2}$ $(x) - 14$ $\overline{}$ $\overline{}$ x $f(x)$ $= 0$ ($x \ne 1$) is (a) 14 (b) 7 (c) -14 (d) -7
- 5. If $\overline{a} = \hat{i} \hat{k}$, $\overline{b} = x\hat{i} + \hat{j} + (1 x)\hat{k}$ and $\vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$, then $\begin{bmatrix} a & b & c \end{bmatrix}$ depends on (a) only y (b) neither x nor y (c) both x and y (d) only x
- If cot $(A + B) = 0$, then sin $(A + 2B)$ is equal to (a) $\sin A$ (b) $\cos 2A$ (c) $\sin 2A$ (d) $\cos A$ 7. The joint equation of pair of lines through the origin and making an equilateral triangle with the line $y = 5$ is (a) $x^2 - 3y^2 = 0$
 (b) $\sqrt{3}x^2 - y^2 = 0$ (c) $3x^2 - y^2 = 0$ (d) $5x^2 - y^2 = 0$ 8. If $f(x) = \sqrt{\tan x}$ and $g(x) = \sin x \cdot \cos x$, then $\int \frac{f(x)}{g(x)}$ $g(x)$ $f(x)$ dx is equal to (where C is a constant of integration) (a) $2\sqrt{\tan x} + C$ (b) $\frac{1}{2}\sqrt{\tan x} + C$ $\frac{1}{x}$ $\sqrt{\tan x}$ + (c) $\sqrt{\tan x} + C$ (d) $\frac{3}{2}\sqrt{\tan x} + C$ $\frac{3}{x}$ $\sqrt{\tan x}$ + 9. The general solution of the differential equation $x - y$ $x + y$ x $y = 3$ d d $\overline{}$ $=$ $\frac{3x + y}{x - y}$ is (where C is a constant of integration.) (a) $\tan^{-1}\left(\frac{y}{x}\right) + \log\left(\frac{y-2x}{x^2}\right) = \log(x) + C$ y^2 + 3x x $\tan^{-1}\left(\frac{y}{r}\right) + \log \left(\frac{y^2 + 3x^2}{r^2}\right) = \log(x)$ $\frac{1}{x}\left(\frac{y}{x}\right) + \log \left(\frac{y^2 + 3x^2}{x^2}\right) = \log(x) +$ \mathbf{I} J \setminus \mathbb{I} \mathbf{I} $\overline{\mathcal{L}}$ $\bigg\} + \log \left(\frac{y^2 + y^2}{\cdot} \right)$ J $\left(\frac{y}{x}\right)$ L $-1($ **(b)** $\frac{1}{\sqrt{2}} \tan^{-1} \left| \frac{y}{\sqrt{2}} \right| + \log \left| \frac{y}{\sqrt{2}} \right| = \log (x) + C$ x $y^2 + 3x$ \mathcal{X} $\left|\frac{y}{\sqrt{2}}\right| + \log \left|\frac{y^2 + 3x^2}{2}\right|^2 = \log(x)$ 3 tan 3 1 -1 y 1 $\left(y^2+3x^2\right)^2$ 1 2 $\left(\frac{y}{x\sqrt{3}}\right) + \log \left(\frac{y^2 + 3x^2}{x^2}\right)^2 = \log(x) +$ $\overline{}$ J λ L \mathbf{I} L $\left| + \log \left(\frac{y^2 + 1}{y^2} \right) \right|$ J λ $\overline{}$ $\overline{\mathcal{L}}$ $-1\left($
	- (c) $\frac{1}{\sqrt{2}} \tan^{-1} \left| \frac{y}{\sqrt{2}} \right| \log \left| \frac{y}{\sqrt{2}} \right| = \log (x) + C$ x $y^2 + 3x$ x $\left(\frac{y}{2}\right) - \log \left(\frac{y^2 + 3x^2}{2}\right)^2 = \log(x)$ 3 tan 3 1 -1 y 1 $\left(y^2+3x^2\right)^2$ 1 2 $\left(\frac{y}{x\sqrt{3}}\right) - \log\left(\frac{y^2 + 3x^2}{x^2}\right)^2 = \log(x) +$ \mathbf{I} J λ L L $\overline{\mathcal{L}}$ $-\log \left(\frac{y^2+}{y^2}\right)$ J λ $\overline{}$ $\overline{\mathcal{L}}$ -1 y^2 + 3x λ $\int y^2 +$ λ -1 ^{$\left($}
	- (d) $\tan^{-1}\left(\frac{x}{y}\right) + \log\left(\frac{y}{x^2}\right) = \log(x) + C$ y $\tan^{-1}\left(\frac{x}{y}\right) + \log\left(\frac{y^2 + 3x^2}{x^2}\right) = \log(x)$ $\frac{1}{v} \left(\frac{x}{v} \right) + \log \left(\frac{y^2 + 3x^2}{x^2} \right) = \log(x) +$ \mathbf{I} J L L $\overline{\mathcal{L}}$ $| +$ J $\overline{}$ $\overline{\mathcal{L}}$

10. If
$$
A = \begin{bmatrix} 1 & 2 & 1 \ 3 & 1 & 3 \end{bmatrix}
$$
 and $B = \begin{bmatrix} 2 & 3 \ 1 & 2 \ 1 & 2 \end{bmatrix}$, then $(AB)^{-1} =$
\n**(a)** $\begin{bmatrix} \frac{17}{5} & \frac{9}{5} \\ \frac{2}{5} & 1 \end{bmatrix}$
\n**(b)** $\begin{bmatrix} \frac{-17}{5} & \frac{9}{5} \\ \frac{5}{2} & -1 \end{bmatrix}$
\n**(c)** $\begin{bmatrix} \frac{17}{5} & 2 \\ \frac{9}{5} & 1 \end{bmatrix}$
\n**(d)** $\begin{bmatrix} \frac{-17}{5} & 2 \\ \frac{-9}{5} & -1 \end{bmatrix}$

11. The distance between parallel lines

$$
\frac{x-1}{2} = \frac{y-2}{-2} = \frac{z-3}{1} \text{ and } \frac{x}{2} = \frac{y}{-2} = \frac{z}{1} \text{ is}
$$
\n(a) $\frac{2\sqrt{5}}{3}$ units\n(b) $\frac{\sqrt{5}}{3}$ units\n(c) $\frac{5\sqrt{5}}{3}$ units\n(d) $\frac{4\sqrt{5}}{3}$ units

- 12. Maximum value of $Z = 5x + 2y$, subject to $2x - y \ge 2$, $x + 2y \le 8$ and $x, y \ge 0$ is (a) 40 (b) 17.6
	- (c) 28 (d) 25.6
- 13. The value of $\sin(2 \sin^{-1} 0.8)$ is equal to (a) 0.96 (b) 0.16
	- (c) 0.12 (d) 0.48
- 14. A line makes the same angle ' α ' with each of the x and y axes. If the angle ' θ ', which it makes with the z-axis, is such that $\sin^2\theta = 2 \sin^2\alpha$, then the angle α is

- 15. The negation of the statement pattern $p \vee (q \rightarrow \sim r)$ is (a) $\sim p \wedge (q \wedge \sim r)$ (b) $\sim p \wedge (q \wedge r)$ (c) $\sim p \wedge (\sim q \wedge r)$ (d) $\sim p \wedge (\sim q \wedge \sim r)$
- 16. Let $\overline{a} = \hat{i} 2\hat{j} + \hat{k}$ and $\overline{b} = \hat{i} \hat{j} + \hat{k}$ be two vectors. If \overline{c} is a vector such that $\overline{b} \times \overline{c} = \overline{b} \times \overline{c}$ and $\overline{c} \cdot \overline{a} = 0$, then $\overline{c} \cdot \overline{b}$ is equal to (a) $-\frac{1}{2}$ 1 $-\frac{1}{2}$ (b) $\frac{3}{2}$

(c)
$$
\frac{1}{2}
$$
 (d) $-\frac{3}{2}$

Marvel Mathematics MHT-CET

17. The incidence of occupational disease in an industry is such that the workmen have a 10% chance of suffering from it. The probability that out of 5 workmen, 3 or more will contract the disease is

(a)
$$
0.000856
$$
 (b) 0.856

(c)
$$
0.0000856
$$
 (d) 0.00856

18. If
$$
y = \log \sqrt{\frac{1 + \sin x}{1 - \sin x}}
$$
, then $\frac{dy}{dx}$ at $x = \frac{\pi}{3}$ is
\n(a) $\frac{1}{2}$ \n(b) $-\frac{1}{2}$
\n(c) 2 \n(d) $\frac{1}{4}$

19. The variance and mean of 15 observations are respectively 6 and 10. If each observation is increased by 8 then the new variance and new mean of resulting observations are respectively

(a) 6, 18 (b) 6, 10 (c) 14, 10 (d) 14, 18

20. If
$$
y = \sin \left(2 \tan^{-1} \sqrt{\frac{1+x}{1-x}}\right)
$$
, then $\frac{dy}{dx}$ is equal to
\n(a) $\frac{-x}{\sqrt{1-x^2}}$ (b) $\frac{-2x}{\sqrt{1-x^2}}$
\n(c) $\frac{-1}{\sqrt{1-x^2}}$ (d) $\frac{1}{\sqrt{1-x^2}}$

21. The magnitude of the projection of the vector $2\hat{i} + 3\hat{j} + \hat{k}$ on the vector perpendicular to the plane containing the vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ is

(a)
$$
3\sqrt{6}
$$
 units
\n(b) $\frac{\sqrt{3}}{2}$ units
\n(c) $\frac{3}{\sqrt{2}}$ units
\n(d) $\sqrt{\frac{3}{2}}$ units

22. If
$$
f(x) = ax^2 + bx + 1
$$
, if $|2x - 3| \ge 2$
= $3x + 2$, if $\frac{1}{2} < x < \frac{5}{2}$

is continuous on its domain, then $a + b$ has the value

(a)
$$
\frac{13}{5}
$$
 (b) $\frac{31}{5}$
(c) $\frac{23}{5}$ (d) $\frac{1}{5}$

- 23. If $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ are three vectors then vector \vec{r} in the plane of \overline{a} and \overline{b} , whose projection on c is $\frac{1}{\sqrt{3}}$, $\frac{1}{c}$ is $\frac{1}{\sqrt{c}}$, is given by (a) $(2t + 1)\hat{i} - \hat{j} + (2t + 1)\hat{k}$, $\forall t \in \mathbb{R}$
	- **(b)** $(2t + 1)\hat{i} \hat{j} + (2t 1)\hat{k}$, $\forall t \in \mathbb{R}$
	- (c) $(2t-1)\hat{i} \hat{j} + (2t-1)\hat{k}$, $\forall t \in \mathbb{R}$
	- (d) $(2t-1)\hat{i} \hat{j} + (2t+1)\hat{k}$, $\forall t \in \mathbb{R}$
- **24.** A tetrahedron has verticles $P(1, 2, 1), Q(2, 1, 3),$ $R(-1, 1, 2)$ and $O(0, 0, 0)$. Then the angle between the faces OPO and POR is

25. The principal value of $\sin^{-1} \left| \sin \left(\frac{2\pi}{3} \right) \right|$ J \setminus $\overline{}$ L $\sin\left(\frac{2\pi}{2}\right)$) $\left(\frac{2\pi}{\pi}\right)$ L $\left(2\pi\right)$ 3 $\sin\left(\frac{2\pi}{3}\right)$ is

(a)
$$
\left(\frac{\pi}{3}\right)
$$
 (b) $\left(\frac{2\pi}{3}\right)$
(c) $-\left(\frac{2\pi}{3}\right)$ (d) $\left(\frac{5\pi}{3}\right)$

- **26.** The differential equation $\frac{dy}{dx} = \frac{\sqrt{2}}{y}$ y x $y = \sqrt{1-y^2}$ d $\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{2}$ determines a family of circles with
	- (a) fixed radius of 1 unit and variable centres along the X-axis
	- (b) fixed radius of 1 unit and variable centres along the Y-axis
	- (c) variable radii and a fixed centre at (0, 1)
	- (d) variable radii and a fixed centre at $(0, -1)$

27. The value of the integral 1 0 $\int_{0}^{1} \sqrt{\frac{1-x}{1+x}}$ x 1 1 $^{+}$ $\overline{}$ dx is (a) $\left(\frac{\pi}{2}\right) + 1$ Ј $\left(\frac{\pi}{\pi}\right)$ L $\left(\frac{\pi}{2}\right) + 1$ (b) $\left(\frac{\pi}{2}\right) - 1$ Ј $\left(\frac{\pi}{\pi}\right)$ L $\sqrt{\pi}$ (c) 1 (d) -1

- 28. If a question paper consists of 11 questions divided into two sections I and II. Section I consists of 6 questions and section II consists of 5 questions, then the number of different ways can student select 6 questions, taking at least 2 questions from each section, is
	- (a) 425 (b) 275 (c) 350 (d) 225
- 29. The area (in sq. units) of the region described by $A = \{(x, y)/x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is

(a)
$$
\left(\frac{\pi}{2} + \frac{2}{3}\right)
$$
 (b) $\left(\frac{\pi}{2} + \frac{4}{3}\right)$
(c) $\left(\frac{\pi}{2} - \frac{4}{3}\right)$ (d) $\left(\frac{\pi}{2} - \frac{2}{3}\right)$

- 30. A firm is manufacturing 2000 items. It is estimated that the rate of change of production P with respect to additional number of workers x is given by x x $\frac{P}{1}$ = 100 - 12 d $\frac{dP}{dt} = 100 - 12\sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (a) 4500 (b) 3000
	- (c) 2500 (d) 3500

31.
$$
\int \frac{3x - 2}{(x + 1)(x - 2)^2} dx =
$$

\n(where C is a constant of integration)
\n(a)
$$
\frac{-5}{9} \log(x + 1) + \frac{5}{9} \log(x - 2) - \frac{4}{3} \times \frac{1}{(x - 2)} + C
$$

\n(b)
$$
\frac{-5}{9} \log(x + 1) + \frac{5}{9} \log(x - 2) - \frac{1}{x - 2} + C
$$

\n(c)
$$
\frac{1}{9} \log(x + 1) + \frac{5}{9} \log(x - 2) - \frac{4}{3} \times \frac{1}{(x - 2)} + C
$$

\n(d)
$$
\frac{-5}{9} \log(x + 1) + \frac{1}{9} \log(x - 2) - \frac{1}{3} + C
$$

32. If the normal to the curve $y = f(x)$ at the point (3, 4) makes an angle c \mathbf{I} Ј $\left(\frac{3\pi}{\cdot}\right)$ L $\int 3\pi$ 4 3 with positive X-axis, then $f'(3)$ is equal to

(d) $\frac{0}{9} \log(x+1) + \frac{1}{9} \log(x-2) - \frac{1}{x-2} + C$ $x + 1$ + $\frac{1}{2} \log(x)$

9

2

 $\overline{}$

(a) -1 (b) $\frac{1}{3}$ 4

9

(c)
$$
-\frac{3}{4}
$$
 (d) 1

33. If $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$, then $P(A') + P(B')$ is (a) 1.1 (b) 1.6

(c) 1.8 (d) 0.6

4 Marvel Mathematics MHT-CET

34. If
$$
\lim_{x \to 1} \frac{x^2 - ax + b}{(x - 1)} = 5
$$
, then $(a + b)$ is equal to
\n(a) -4
\n(b) -7
\n(c) 7
\n(d) -3

35. If
$$
y = \cos (\sin x^2)
$$
, then $\frac{dy}{dx}$ at $x = \sqrt{\frac{\pi}{2}}$ is
\n(a) 0
\n(b) 2
\n(c) -1
\n(d) -2

36. Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then mean of number of kings is

(a)
$$
\frac{4}{169}
$$
 (b) $\frac{1}{13}$
(c) $\frac{1}{169}$ (d) $\frac{2}{13}$

37. The polar co-ordinates of the point, whose Cartesian coordinates are $(-2\sqrt{3}, 2)$, are

38. Let z be a complex number such that $|z| + z = 3 + i$, $i = \sqrt{-1}$, then |z| is equal to

39. Given
$$
A = \begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}
$$
, if $xyz = 60$ and
\n $8x + 4y + 3z = 20$, then A
\n(a) $\begin{bmatrix} 60 & 0 & 0 \\ 0 & 60 & 0 \\ 0 & 0 & 60 \end{bmatrix}$ (b) $\begin{bmatrix} 108 & 0 & 0 \\ 0 & 108 & 0 \\ 0 & 0 & 108 \end{bmatrix}$
\n(c) $\begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ (d) $\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$

40. If
$$
y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x
$$
, $x \ne 1$, then $(x^2 - 1) \left(\frac{dy}{dx}\right)^2$ is equal
\nto
\n(a) my^2
\n(b) m^2y
\n(c) m^2y^2
\n(d) $\frac{my^2}{2}$
\n41. $\int_{0}^{2} [x] dx + \int_{0}^{2} |x - 1| dx =$
\n(where [x] denotes the greatest integer function.)
\n(a) 4
\n(b) 3
\n(c) 1
\n(d) 2

- 42. The equations of the lines passing through the point (3, 2) and making an acute angle of 45º with the line $x - 2y - 3 = 0$ are
	- (a) $3x + y 11 = 0$, $x + 3y + 9 = 0$
	- (**b**) $3x y 7 = 0$, $x + 3y 9 = 0$
	- (c) $3x + y 11 = 0$, $x + 3y 9 = 0$
	- (d) $x + 2y 7 = 0$, $2x y 4 = 0$
- 43. If $[x]$ is greatest integer function and $2[2x-5]-1=7$, then x lies in

(a)
$$
\left(\frac{9}{2}, 5\right)
$$

\n(b) $\left(\frac{9}{2}, 5\right]$
\n(c) $\left[\frac{9}{2}, 5\right]$
\n(d) $\left[\frac{9}{2}, 5\right]$

44. The Cartesian equation of a line passing through $(1, 2, 3)$ and parallel to $x - y + 2z = 5$ and $3x + y + z = 6$ is

(a)
$$
\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}
$$

\n(b)
$$
\frac{x-1}{3} = \frac{y-2}{1} = \frac{z-3}{1}
$$

\n(c)
$$
\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{1}
$$

\n(d)
$$
\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-3}{4}
$$

- 45. If the lines $3x 4y 7 = 0$ and $2x 3y 5 = 0$ pass through diameters of a circle of area 49π square units, then the equation of the circle is
	- (a) $x^2 + y^2 2x + 2y 47 = 0$
	- (**b**) $x^2 + y^2 2x + 2y + 51 = 0$
	- (c) $x^2 + y^2 + 2x 2y 51 = 0$
	- (d) $x^2 + y^2 + 2x + 2y + 47 = 0$

46. A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness that melts at the rate of 50 cm³ /min. If the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases is

(a)
$$
\frac{-1}{18\pi}
$$
 cm/min
\n(b) $\frac{2}{9\pi}$ cm/min
\n(c) $\frac{1}{18\pi}$ cm/min
\n(d) $\frac{1}{3\pi}$ cm/min

$$
47. \int \frac{\sin \frac{5x}{2}}{\sin \frac{x}{2}} dx =
$$

(where C is a constant of integration.)

$$
(a) \quad x + \sin x + \sin 2x + C
$$

$$
(b) \t x + \sin x + \sin 2x - C
$$

(c)
$$
x + 2 \sin x + 2 \sin 2x + C
$$

- (d) None of these
- 48. The equation of the plane passing through the points $(2, 3, 1), (4, -5, 3)$ and parallel to X-axis is

(a)
$$
3y + 4z = 13
$$

(b) $y - 4z = -1$

(c)
$$
2y + 4z = 19
$$

 (d) $y + 4z = 7$

49. If $\int e^{x^2} \cdot x^3 dx = e^{x^2} \cdot [f(x) + C]$ (where C is a constant of integration.) and $f(1) = 0$, then value of $f(2)$ will be (a) $\frac{ }{2}$ 3 (**b**) $\frac{ }{2}$ -1

(c)
$$
\frac{3}{2}
$$
 (d) $\frac{1}{2}$

- 50. The negation of the statement, "The payment will be made if and only if the work is finished in time" is
	- (a) The work is finished in time and the payment is not made or the payment is made and the work is finished in time.
	- (b) The work is finished in time and the payment is not made.
	- (c) The payment is made and the work is not finished in time.
	- (d) Either the work is finished in time and the payment is not made or the payment is made and the work is not finished in time.

HINTS / SHORT-CUTS / SOLUTIONS

1.
$$
I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{2 \cdot \cos^2 \frac{x}{2}}
$$

\n
$$
= \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \left(\frac{1}{2} \sec^2 \frac{x}{2}\right) dx = \left[\tan \frac{x}{2}\right]_{\frac{\pi}{4}}^{\frac{3\pi}{4}}
$$

\n
$$
= \tan \frac{3\pi}{8} - \tan \frac{\pi}{8} = \frac{\sin (3\pi/8)}{\sin (3\pi/8)} - \frac{\sin (\pi/8)}{\cos (\pi/8)}
$$

\n
$$
= \frac{\sin (3\pi/8) \cdot \cos (\pi/8) - \cos (3\pi/8) \cdot \sin (\pi/8)}{\cos (3\pi/8) \cdot \cos (\pi/8)}
$$

\n
$$
= \frac{1}{\frac{1}{2} \left[\cos \left(\frac{3\pi}{8} + \frac{\pi}{8}\right) + \cos \left(\frac{3\pi}{8} - \frac{\pi}{8}\right)\right]}
$$

\n
$$
= \frac{2 \times \sin \frac{\pi}{4}}{\cos \frac{\pi}{2} + \cos \frac{\pi}{4}} = \frac{2 \times \frac{1}{\sqrt{2}}}{0 + \frac{1}{\sqrt{2}}} = 2
$$
 ... (b)
\n2. $\because \tan^{-1} \left(\frac{1 - x}{1 + x}\right) = \frac{1}{2} \cdot \tan^{-1}x$
\n $\therefore 2 \left[\tan^{-1} \left(\frac{1 - x}{1 + 1 \cdot x}\right)\right] = \tan^{-1}x$
\n $\therefore 2 \left[\tan^{-1} 1 - \tan^{-1}x\right] = \tan^{-1}x$
\n $\therefore 2 \left(\frac{\pi}{4} - \tan^{-1}x\right) = \tan^{-1}x$

6 Marvel Mathematics MHT-CET

$$
\therefore \frac{\pi}{2} = 3 \cdot \tan^{-1} x
$$

\n
$$
\therefore \frac{\pi}{6} = \tan^{-1} x
$$

\n
$$
\therefore x = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}
$$
 ... (c)
\n3. $\forall n \in N, n^2 + n$ is an even number

- but $2 - n$ is not an even number \therefore p is T and q is F \therefore $p \wedge q = T \wedge F = F$ $p \vee q = T \vee F = T$ $p \rightarrow q = T \rightarrow F = F$... (a) 4. $\therefore f$ is \uparrow in $(0, 1]$ and \downarrow in $[1, 5)$
	- \therefore f is both \uparrow and \uparrow at $x = 1$ $f(1)$ = constant $\therefore f'(1) = 0$

$$
\therefore f(x) = x^3 - 3 (a - 2) x^2 + 3ax + 7
$$

\n
$$
\therefore f'(x) = 3x^2 - 6 (a - 2) x + 3a
$$

\n
$$
\therefore f'(1) = 3 - 6 (a - 2) + 3a = 15 - 3a = 0
$$

\n
$$
\therefore a = 5
$$

\n
$$
\therefore f(x) = x^3 - 9x^2 + 15x + 7
$$

\n
$$
\therefore f(x) - 14 = x^3 - 9x^2 + 15x - 7
$$

\n
$$
= (x - 7) (x - 1)^2
$$
... factorising

$$
\therefore \frac{f(x) - 14}{(x - 1)^2} = x - 7 = 0 \qquad \therefore x = 7 \qquad \text{... (b)}
$$

5.
$$
\vec{a} = \hat{i} - \hat{k} = (1, 0, -1)
$$

\n $\vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k} = (x, 1, 1 - x)$
\n $\vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} = (y, x, 1 + x - y)$
\n $\therefore [\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1 - x \\ y & x & 1 + x - y \end{vmatrix}$
\n $= \begin{vmatrix} 1 & 0 & 0 \\ x & 1 & 1 \\ y & x & 1 + x \end{vmatrix}$... by $C_1 + C_3$
\n $= 1 [(1) (1 + x) - (x) (1)]$
\n $= 1 + x - x$
\n $= 1$
\n= contains neither x nor y (b)
\n6. $\therefore \cot (A + B) = 0$ $\therefore A + B = \frac{\pi}{2}$

$$
\therefore \sin (A + 2B) = \sin \left[A + 2\left(\frac{\pi}{2} - A\right) \right]
$$

$$
= \sin (A + \pi - 2A)
$$

$$
= \sin (\pi - A)
$$

$$
= \sin A \qquad \qquad \dots (a)
$$

7. Joint equation of a pair of lines, through the origin, making an equilateral triangle with the line $y = b$, is

$$
\sqrt{3x^2 - y^2} = 0 \qquad \qquad \dots (b)
$$

\n8.
$$
I = \int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} dx
$$

\n
$$
= \int \frac{\sqrt{\tan x}}{(\frac{\sin x}{\cos x}) \cdot \cos^2 x} dx
$$

\n
$$
= \int \frac{\sqrt{\tan x}}{\tan x} \cdot \frac{1}{\cos^2 x} dx
$$

\n
$$
= \int \frac{1}{\sqrt{\tan x}} \cdot \sec^2 x dx
$$

\n
$$
= \int \frac{1}{\sqrt{t}} dt, \qquad t = \tan x
$$

\n
$$
= 2 \cdot \sqrt{t} + C
$$

\n
$$
= 2 \cdot \sqrt{\tan x} + C \qquad \qquad \dots (a)
$$

\n9.
$$
\frac{dy}{dx} = \frac{3x + y}{x - y} \qquad \therefore \text{ put } y = vx
$$

$$
\frac{dx}{dx} = \frac{y}{1-y} \quad \therefore \quad \frac{pu}{y - vx}
$$
\n
$$
\therefore v + x \cdot \frac{dv}{dx} = \frac{3+v}{1-v} \quad \therefore x \cdot \frac{dv}{dx} = \frac{3+v}{1-v} - v
$$
\n
$$
\therefore x \cdot \frac{dv}{dx} = \frac{3+v-v+v^2}{1-v} \quad \therefore x \cdot \frac{dv}{dx} = \frac{3+v^2}{1-v}
$$
\n
$$
\therefore \int \frac{1-v}{3+v^2} dv = \int \frac{1}{x} dv
$$
\n
$$
\therefore \int \frac{1}{\sqrt{3^2 + v^2}} dv - \frac{1}{2} \int \frac{2v}{3+v^2} dv = \log x
$$
\n
$$
\therefore \frac{1}{\sqrt{3}} \cdot \tan^{-1} \left(\frac{v}{\sqrt{3}}\right) - \frac{1}{2} \cdot \log(3+v^2) = \log x + C
$$
\n
$$
\therefore \frac{1}{\sqrt{3}} \cdot \tan^{-1} \left(\frac{y}{x\sqrt{3}}\right) - \log \left(\frac{y^2 + 3x^2}{x^2}\right)^{1/2}
$$
\n
$$
= \log x + C \qquad \text{... (c)}
$$

10. Note:
$$
\begin{bmatrix} a & b \\ c & d \end{bmatrix}^T = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

\n $A \cdot B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 9 \\ 10 & 17 \end{bmatrix}$
\n $\therefore |AB| = 85 - 90 = -5$
\n $\therefore (AB)^{-1} = \frac{1}{-5} \begin{bmatrix} 17 & -9 \\ -10 & 5 \end{bmatrix} = \begin{bmatrix} -17/5 & 9/5 \\ 2 & -1 \end{bmatrix} \dots (b)$
\n**11.** $L_1 : \frac{x - 1}{2} = \frac{y - 2}{-2} = \frac{z - 3}{1}$
\n $L_2 = \frac{x - 0}{2} = \frac{y - 0}{-2} = \frac{z - 0}{1}$

 their vector equations are r a1 mb and r a2 nb, where a1 (1, 2, 3), a2 (0, 0, 0), b (2, 2, 1) (8, 5, 6) 2 2 1 1 2 3 ˆ ˆ ˆ (1 2) i j k a a b | (a2 a1) b | 64 25 36 5 5 | b | 4 4 1 3 3 () 5 5 d (,) 2 1 ¹ ² b a a b L L ... (c) 12. Z = 5x + 2y ... (1) 2x – y 2, x + 2y 8, x, y 0 L1 : 2x – y = 2, L² : x + 2y = 8 A (1, 0), B (0, –2) lie on L¹ C (8, 0), D (0, 4) lie on L² ^L¹ ^L² 5 14 , 5 12 E Critical points are A (1, 0), C (8, 0), E 5 14 , 5 12 Z^A = 5 (1) + 2 (0) = 5 ZC = 5 (8) + 2 (0) = 40 17.6 5 88 5 ¹⁴ ² 5 ¹² ⁵ ^E Z ^Zmax = 40 ... (a) 13. If x = 0.8, then sin (2 sin–1x) = 2x · ² ¹ ^x = 2 (0.8) ² 1 (0.8) = (1.6) 1 0.64 = (1.6) (0.6) = 0.96 ... (a) 14. cos2 + cos2 + cos2 = 1 1 – cos2 = 2 cos2 sin2 = 2 cos2 2 sin2 = 2 cos2 ... (Given) tan = 1

$$
\therefore \alpha = \frac{\pi}{4} \qquad \qquad \dots (a)
$$

15.
$$
-[p \lor (q \to \neg r)]
$$

\n
$$
= (\neg p) \land \neg (q \to \neg r)
$$

\n
$$
= \neg p \land (q \land \neg r)
$$

\n
$$
= \neg p \land (q \land r)
$$

\n18.
$$
y = \log \left[\left(\frac{1 + \sin x}{1 - \sin x} \right)^{1/2} \right]
$$

\n
$$
\therefore y = \frac{1}{2} [\log (1 + \sin x) - \log (1 - \sin x)]
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{1}{2} \left[\frac{1}{1 + \sin x} (\cos x) - \frac{1}{1 - \sin x} (-\cos x) \right]
$$

\n
$$
= \frac{1}{2} (\cos x) \left[\frac{1}{1 + \sin x} + \frac{1}{1 - \sin x} \right]
$$

\n
$$
= \frac{\cos x}{\cos^2 x}
$$

\n
$$
\therefore \frac{dy}{dx} \Big|_{x = \pi/3} = \frac{1}{\cos \frac{\pi}{3}} = \frac{1}{\left(\frac{1}{2} \right)} = 2
$$
 ...(e)
\n20.
$$
y = \sin \left\{ 2 \cdot \tan^{-1} \sqrt{\frac{1 + x}{1 - x}} \right\}
$$

\nPutting $x = \cos 2\theta$,
\n
$$
\sqrt{\frac{1 + x}{1 - x}} = ... = \cot \theta = \tan \left(\frac{\pi}{2} - \theta \right)
$$

\n
$$
\therefore y = \left\{ \sin 2 \cdot \tan^{-1} \left[\tan \left(\frac{\pi}{2} - \theta \right) \right] \right\}
$$

\n
$$
= \sin \left(2 \left(\frac{\pi}{2} - \theta \right) \right)
$$

\n
$$
= \sin 2\theta
$$

\n
$$
= \sqrt{1 - \cos^2 2\theta}
$$

\n
$$
= \sqrt{1 - x^2}
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{1}{2\sqrt{1 - x^2}} \times \frac{d}{dx} (1 - x^2)
$$

\n
$$
= \frac{1}{2\sqrt{1 - x^2}}
$$

 $1 - x^2$

... (a)

 $\overline{}$

26. D.E. :
$$
\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{y}
$$
 $\therefore \frac{y dy}{\sqrt{1 - y^2}} = dx$
\n $\therefore \int \frac{-2y}{\sqrt{1 - y^2}} dy = -2 \int dx$
\n $\therefore 2\sqrt{1 - y^2} = -2x + 2c$
\n $\therefore \sqrt{1 - y^2} = -x + c$
\n $\therefore \text{Sq. : } 1 - y^2 = x^2 - 2cx + c^2$
\n $\therefore x^2 + y^2 - 2cx + (c^2 - 1) = 0$
\n $\therefore 2g = -2c, 2f = 0, k = c^2 - 1$
\n $\therefore C = (-g, -f) = (c, 0),$
\n $r = \sqrt{g^2 + f^2 - k} = \sqrt{c^2 + 0^2 - (c^2 - 1)} = 1$
\n $\therefore r = 1$, fixed; $C = (c, 0)$, moves on *X*-axis as *c* changes.
\n \therefore (a)
\n27. $I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} dx = \int_0^1 \sqrt{\frac{1 - x}{1 + x} \cdot \frac{1 - x}{1 - x}} dx$

$$
\begin{aligned}\n&= \int_{0}^{1} \frac{1-x}{\sqrt{1-x^2}} dx \\
&= \int_{0}^{1} \left[\frac{1}{\sqrt{1-x^2}} - \frac{x}{\sqrt{1-x^2}} \right] dx \\
&= [\sin^{-1}x + \sqrt{1-x^2}]_{0}^{1} \\
&= (\sin^{-1}1 + 0) - (\sin^{-1}0 + 1) \\
&= \frac{\pi}{2} - (0 + 1) \\
&= \frac{\pi}{2} - 1 \qquad \text{(b)}\n\end{aligned}
$$

32. At the point $P(3, 4)$, $x = 3$

 \therefore slope of normal to the curve $y = f(x)$ at P is

$$
m_N = \frac{-1}{f'(3)} = \tan \frac{3\pi}{4} = -\cot \frac{\pi}{4} = -1
$$

\n
$$
\therefore \frac{-1}{f'(3)} = -1
$$

\n
$$
\therefore f'(3) = 1
$$

\n33. $P(A \cup B) = 0.7$, $P(A \cap B) = 0.2$
\n
$$
\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)
$$

\n
$$
\therefore P(A) + P(B) = P(A \cup B) + P(A \cap B)
$$

\n
$$
= 0.7 + 0.2
$$

\n= 0.9

$$
\therefore P(A') + P(B') = [1 - P(A)] + [1 - P(B)]
$$

= 2 - [P(A) + P(B)]
= 2 - 0.9
= 1.1 ... (a)

8 Marvel Mathematics MHT-CET

34.
$$
\therefore
$$
 the given limit exists as $x - 1$
\n \therefore numerator has a factor $(x - 1)$
\n \therefore its value at $x = 1$ is 0
\n \therefore at $x = 1$, $x^2 - ax + b = 0$
\n \therefore (1)² - a (1) + b = 0
\n \therefore 1 - a + b = 0 (1)
\n \therefore $\lim_{x \to 1} \frac{x^2 - ax + b}{x - 1} = 5$
\n \therefore Using L'Hôpital's Rule on L.H.S.,
\n $\lim_{x \to 1} \frac{2x - a}{1} = 5$
\n \therefore 2 (1) - a = 5
\n \therefore a = -3
\n \therefore from (1), 1 - (-3) + b = 0 \therefore b = -4
\n \therefore a + b = -3 - 4 = -7
\n35. \therefore y = cos (sin x²) (1)
\n \therefore at $x = \sqrt{\frac{\pi}{2}}$,
\n $y = cos (\sin \frac{\pi}{2}) = cos 1$
\n(1) $\Rightarrow \frac{dy}{dx} = 2x \cdot cos x^2 \cdot [-sin (sin x2)]$
\n $= -2x \cdot cos x^2 \cdot sin (sin x2)$
\n $\therefore \frac{dy}{dx}|_{x=\sqrt{\pi/2}} = -2 \cdot \sqrt{\frac{\pi}{2}} \cdot cos \frac{\pi}{2} \cdot sin (\sin \frac{\pi}{2})$
\n $= -2 \cdot \sqrt{\frac{\pi}{2}} \cdot (0) \cdot sin 1$
\n= 0
\n... (a)

37. Cartesian =
$$
(-2\sqrt{3}, 2) = (r \cdot \cos \theta, r \cdot \sin \theta)
$$

\n $\therefore r = \sqrt{x^2 + y^2} = \sqrt{12 + 4} = 4$
\n $\theta = \tan^{-1} \left(\frac{y}{x}\right) = \tan^{-1} \left(-\frac{1}{\sqrt{3}}\right) = \tan^{-1} \left(-\tan \frac{\pi}{6}\right)$
\n $= \tan^{-1} \left[\tan \left(\pi - \frac{\pi}{6}\right)\right]$
\n $= \frac{5\pi}{6}$
\n \therefore Polar = $\left(4, \frac{5\pi}{6}\right)$... (b)
\n40. $\therefore y^{1/m} + y^{-1/m} = 2x, \quad \dots x \ne 1$... (1)
\n \therefore Squaring both sides,
\n $y^{2/m} + y^{-2/m} + 2 = 4x^2$
\n \therefore adding (-4) to both sides

 $y^{2/m} + y^{-2/m} - 2 = 4x^2 - 4$

$$
\therefore (y^{1/m} - y^{-1/m})^2 = 4 (x^2 - 1)
$$

\n
$$
\therefore y^{1/m} - y^{-1/m} = 2\sqrt{x^2 - 1}
$$
 ... (2)

$$
\therefore (1) + (2) \Rightarrow 2y^{1/m} = 2x + 2\sqrt{x^2 - 1}
$$

$$
\therefore \qquad y^{1/m} = x + \sqrt{x^2 - 1}
$$

$$
\therefore \qquad y = (x + \sqrt{x^2 - 1})^m
$$

$$
\therefore \log y = m \cdot \log(x + \sqrt{x^2} - 1)
$$

$$
\therefore \textbf{Differentiating b.s. w.r.t. } x,
$$

$$
\frac{1}{y} \cdot \frac{dy}{dx} = m \cdot \frac{1}{x + \sqrt{x^2 - 1}} \cdot \left[1 + \frac{1}{2\sqrt{x^2 - 1}} \cdot 2x \right]
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{my}{x + \sqrt{x^2 - 1}} \times \frac{\sqrt{x^2 - 1} + x}{\sqrt{x^2 - 1}}
$$
\n
$$
\therefore \sqrt{x^2 - 1} \cdot \frac{dy}{dx} = my
$$
\n
$$
(dx)^2
$$

:. Squaring b.s. :
$$
(x^2 - 1) \cdot \left(\frac{dy}{dx}\right)^2 = m^2 y^2
$$
 ... (c)
42. (3, 2) 45°, I : 1x, 2y, 3 = 0

42. (3, 2), 45°,
$$
L_1
$$
: $1x - 2y - 3 = 0$
\n $\therefore m_1 = -(1)/(2) = 1/2$
\nRequired lines $L : y - 2 = m (x - 3)$ (1)
\n $\therefore m \angle (L, L_1) = 45°$
\n $\therefore \tan 45° = \left| \frac{m - m_1}{1 + mm_1} \right| = 1$
\n $\therefore \left| \frac{m - \frac{1}{2}}{1 + m \cdot \frac{1}{2}} \right| = 1$ $\therefore |2m - 1| = |m + 2|$
\n \therefore squaring : $4m^2 - 4m + 1 = m^2 + 4m + 4$
\n $\therefore 3m^2 - 8m - 3 = 0$
\n $\therefore (m - 3) (3m + 1) = 0$
\n $\therefore m = 3, -\frac{1}{3}$

 \therefore from (1), the required lines are

$$
y-2=3(x-3)
$$
 and $y-2=-\frac{1}{3}(x-3)$
\n $\therefore y-2=3x-9$ and $3y-6=-x+3$
\n $\therefore 3x-y-7=0$ and $x+3y-9=0$... (b)
\nRequired line $I \rightarrow B(1, 2, 3)$

44. Required line $L \rightarrow P(1, 2, 3)$

 $L \| E_1 : 1x - 1y + 2z = 5$ $L \| E_2 : 3x + 1y + 1z = 6$

$$
\overline{n_1} \equiv (1, -1, 2), \overline{n_2} \equiv (3, 1, 1)
$$

$$
\therefore \overline{n_1} \times \overline{n_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1 \end{vmatrix} = -3\hat{i} - 5\hat{j} + 4\hat{k}
$$

$$
\equiv (-3, -5, 4)
$$

$$
\therefore \text{ dR s of line I are } (-3, -5, 4) \text{ and it passes through } \overline{n_1} = 0
$$

 \therefore d.R.s. of line L are $(-3, -5, 4)$ and it passes through $(1, 2, 3)$

 \therefore its cartesian equations are

$$
\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-3}{4}
$$
 ... (d)

45. Solving
$$
3x - 4y = 7
$$
 and $2x - 3y = 5$,
\ncentre $\equiv (1, -1)$
\n \therefore area $\pi r^2 = 49\pi$ \therefore $r = 7$
\n \therefore $\Theta : (x - 1)^2 + (y + 1)^2 = 7^2$
\n \therefore $x^2 + y^2 - 2x + 2y - 47 = 0$... (a)
\n
$$
\sin\left(\frac{5x}{2}\right)
$$
\n47. $I = \int \frac{\sin\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} dx$
\nPutting $\frac{x}{2} = \theta$, i.e., $dx = 2d\theta$
\n $I = \int \frac{\sin 5\theta}{\sin \theta} d\theta$
\n $= \int \frac{\sin \theta \cdot (2 \cos 2\theta + 2 \cos 4\theta + 1)}{\sin \theta} \cdot 2d\theta$
\n $= 2 \cdot \int (1 + 2 \cos 2\theta + 2 \cos 4\theta) d\theta$
\n $= 2 \left[\theta + 2\left(\frac{\sin 2\theta}{2}\right) + 2\left(\frac{\sin 4\theta}{4}\right)\right] + c, \dots x = 2\theta$
\n $= 2\theta + 2 \sin 2\theta + \sin 4\theta + c$
\n $= x + 2 \sin x + \sin 2x + c$... (Ans.)

Note : None of the given option matches the answer.

48. Points $(2, 3, 1)$ and $(4, -5, 3)$ both satisfy only option (d). \therefore correct option is (d).

49.
$$
I = \int e^{x^2} \cdot x^3 dx
$$

\n $= \frac{1}{2} \int x^2 \cdot e^{x^2} \cdot (2x) dx$
\n $= \frac{1}{2} \int (t \cdot e^t) dt, \quad ... t = x^2$
\n $= \frac{1}{2} [t (e^t) - \int (e^t) (1) dt]$
\n $= \frac{1}{2} (t-1) \cdot e^t$
\n $= \frac{1}{2} (x^2 - 1) \cdot e^{x^2}$
\n $= e^{x^2} \cdot [f(x) - c]$... (Given)

$$
\therefore f(x) = \frac{1}{2} (x^2 - 1) + c
$$

\n
$$
\therefore f(1) = 0 \qquad \therefore \frac{1}{2} (0) + c = 0 \qquad \therefore c = 0
$$

\n
$$
\therefore f(x) = \frac{1}{2} (x^2 - 1) + 0
$$

\n
$$
\therefore f(2) = \frac{1}{2} (4 - 1) = \frac{3}{2} \qquad \qquad \text{... (c)}
$$

50. p : Payment is made,

 q : Work is finished in time

$$
\therefore \sim (p \leftrightarrow q) = (p \land \sim q) \lor (\sim p \land q) \qquad \qquad \textbf{... (d)}
$$