MHT-CET 2022 Question Paper

6th August 2022 (Shift - I)

If matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ is such that AX = I, where $\int \frac{5(x^6 + 1)}{x^2 + 1} dx = I$

I is 2×2 unit matrix, then X =

- (A) $\frac{1}{5}\begin{bmatrix} 3 & 2\\ 4 & 1 \end{bmatrix}$ (B) $\frac{1}{5}\begin{bmatrix} 3 & -2\\ -4 & 1 \end{bmatrix}$
- (C) $\frac{1}{5}\begin{bmatrix} -3 & -2 \\ -4 & -1 \end{bmatrix}$ (D) $\frac{1}{5}\begin{bmatrix} -3 & 2 \\ 4 & -1 \end{bmatrix}$
- $\int_{0}^{2} f(x) dx =$

Where $f(x) = \sin |x| + \cos |x|, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

- $(A) \quad 0$
- (C) 4
- (D) 8
- The principal solutions of $\tan 3\theta = -1$ are 3.
 - $\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{\pi}{16}, \frac{19\pi}{4}, \frac{23\pi}{24}\right\}$
 - (B) $\left\{\frac{\pi}{4}, \frac{7\pi}{12}, \frac{11\pi}{12}, \frac{5\pi}{4}, \frac{19\pi}{12}, \frac{23\pi}{12}\right\}$

 - (D) $\left\{\frac{\pi}{4}, \frac{\pi}{12}, \frac{13\pi}{12}, \frac{7\pi}{4}, \frac{19\pi}{4}, \frac{23\pi}{12}\right\}$
- 4. For three simple statements p, q, and r, $p \rightarrow (q \lor r)$ is logically equivalent to
 - (A) $(p \lor q) \rightarrow r$
 - (B) $(p \rightarrow \sim q) \land (p \rightarrow r)$
 - (C) $(p \rightarrow q) \lor (p \rightarrow r)$
 - (D) $(p \rightarrow q) \land (p \rightarrow \sim r)$
- 5. If \bar{a} and \bar{b} are two vectors such that $|\bar{a}| = |\bar{b}| = \sqrt{2}$ with $\bar{a} \cdot \bar{b} = -1$, then the angle between \bar{a} and \bar{b} is

- (D)
- Argument of $\frac{1-i\sqrt{3}}{1+i\sqrt{3}}$ is
 - (A)
- 210° (B)
- (C) 120°
- (D) 240°

(where C is a constant of integration.)

- (A) $\frac{5x^7}{7} + 5x + 5\tan^{-1}x + C$
- (B) $5\tan^{-1} x + \log(x^2 + 1) + C$ (C) $5(x^7 + 1) + \log(x^2 + 1) + C$
- (D) $x^5 \frac{5x^3}{2} + 5x + C$
- Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then c is
 - (A) not arithmetic mean of a and b.
 - the geometric mean of a and b.
 - (C) the arithmetic mean of a and b.
 - the harmonic mean of a and b.
- $\lim_{x\to 0} \left(\frac{1+\tan x}{1+\sin x}\right)^{\csc x} =$
 - (A) 0
- (C) 1
- 10. If $y = \sec^{-1}\left(\frac{x + x^{-1}}{x x^{-1}}\right)$, then $\frac{dy}{dx} = \frac{1}{2}$

 - (A) $\frac{-2}{1+x^2}$ (B) $\frac{-1}{1+x^2}$

 - (C) $\frac{2}{1-x^2}$ (D) $\frac{1}{1+x^2}$
- If the line passing through the points (a, 1, 6) and (3, 4, b) crosses the yz – plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$, then
- (A) a = 5, b = 1 (B) a = -5, b = 1 (C) a = -5, b = -1 (D) a = 5, b = -1
- 20 meters of wire is available to fence of a flowerbed in the form of a circular sector. If the flowerbed is to have maximum surface area, then the radius of the circle is
 - (A) 8 m
- (B) 5 m
- (C) 2 m
- (D) 4 m

MHT-CET 2022 Question Paper 6th August 2022 (Shift - I)

- Five letters are placed at random in five 13. addressed envelopes. The probability that all the letters are not dispatched in the respective right envelopes is
 - (A)
- 120

- 14. If $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ A $\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then A =
 - (A) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
- 15. The general solution of the differential equation $x^{2} + y^{2} - 2xy \frac{dy}{dx} = 0$ is

(where C is a constant of integration.)

- (A) $2(x^2 y^2) + x = C$ (B) $x^2 + y^2 = Cy$
- (C) $x^2 y^2 = Cx$ (D) $x^2 + y^2 = Cx$
- If the lines 2x 3y = 5 and 3x 4y = 7 are the diameters of a circle of area 154 sq. units, then equation of the circle is

$$\left(\text{Taken } \pi = \frac{22}{7}\right)$$

- (A) $x^2 + y^2 2x 2y 49 = 0$ (B) $x^2 + y^2 2x + 2y 49 = 0$ (C) $x^2 + y^2 2x 2y 47 = 0$ (D) $x^2 + y^2 2x + 2y 47 = 0$
- The joint equation of two lines passing through the origin and perpendicular to the lines given by $2x^2 + 5xy + 3y^2 = 0$ is
 - (A) $3x^2 5xy + 2y^2 = 0$
 - (B) $3x^2 5xy 2y^2 = 0$
 - (C) $2x^2 5xy + 3y^2 = 0$ (D) $3x^2 + 5xy + 2y^2 = 0$
- 18. $\int \frac{e^x}{(2+e^x)(e^x+1)} dx =$

(where C is a constant of integration.)

- (A) $\log \left(\frac{e^x + 2}{e^x + 1} \right) + C$
- (B) $\log \left(\frac{e^x}{e^x + 2} \right) + C$
- (C) $\frac{e^x + 1}{e^x + 2} + C$
- (D) $\log \left(\frac{e^x + 1}{e^x + 2} \right) + C$

- The function $f(x) = 2x^3 9x^2 + 12x + 29$ is 19. monotonically increasing in the interval
 - $(A) \quad (-\infty, \infty)$
- (B) $(-\infty,1) \cup (2,\infty)$
- (C) $(-\infty,1)$
- (D) $(2, \infty)$

20. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3 \end{bmatrix}$$
, then $A_{31} + A_{32} + A_{33} =$

where A_{ij} is cofactor of a_{ij} , where $A = [a_{ij}]_{3\times3}$

- (A) 0
- (B) 1
- (C)
- (D) 11
- The objective function of L.L.P. defined over 21. the convex set attains its optimum value at
 - none of the corner points.
 - (B) at least two of the corner points.
 - (C) all the corner points.
 - at least one of the corner points.
- 22. A round table conference is to be held amongst 20 countries. If two particular delegates wish to sit together, then such arrangements can be done ways.
 - (A) 18!
- (C) $2 \times (18)!$
- $19! \times 2!$ (D)
- 23. The general solution of differential equation $e^{\frac{1}{2}\left(\frac{dy}{dx}\right)} = 3^x$ is

(where C is a constant of integration.)

- (A) $x = (\log 3)y^2 + C$
- (B) $y = x^2 \log 3 + C$
- (C) $y = x \log 3 + C$
- (D) $v = 2x \log 3 + C$
- If $x^y = e^{x-y}$, then $\frac{dy}{dx} =$ 24.
 - (A) $\frac{\log x}{(1+\log x)^2}$ (B) $\frac{\log x}{1+\log x}$
(C) $\frac{x\log x}{(1+\log x)^2}$ (D) $\frac{\log x}{x(1+\log x)^2}$
- The vector projection of \bar{b} on \bar{a} , where 25. $\overline{a} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ and $\overline{b} = 7\hat{i} - 5\hat{j} - \hat{k}$ is
 - (A) $\frac{3(3\hat{i}+2\hat{j}+5\hat{k})}{\sqrt{38}}$ (B) $\frac{9\hat{i}+6\hat{j}+15\hat{k}}{19}$
 - (C) $\frac{3(3\hat{i}+2\hat{j}+5\hat{k})}{38}$ (D) $\frac{6(3\hat{i}+2\hat{j}+5\hat{k})}{\sqrt{38}}$
- The equation of the line perpendicular to 26. 2x - 3y + 5 = 0 and making an intercept 3 with positive Y-axis is
 - 3x + 2y 6 = 0(A)
 - 3x + 2y 12 = 0(B)
 - 3x + 2y 7 = 0(C)
 - (D) 3x + 2y + 6 = 0

MHT-CET 2022 Question Paper 6th August 2022 (Shift – I)

27. If $\int \frac{2e^x + 3e^{-x}}{3e^x + 4e^{-x}} dx = Ax + Blog (3e^{2x} + 4) + C$,

then values of A and B are respectively (where C is a constant of integration.)

- (A) $\frac{3}{4}, \frac{1}{24}$
- (B) $\frac{4}{3}$, -24
- (C) $\frac{1}{4}, \frac{1}{24}$
- (D) $\frac{3}{4}, \frac{-1}{24}$
- 28. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ is two times the other, then
 - (A) $8h^2 = 9ab$
- (B) 8h = 9ab
- (C) $8h^2 = 9ab^2$
- (D) $8h = 9ab^2$
- 29. Two numbers are selected at random from the first six positive integers. If X denotes the larger of two numbers, then Var (X) =
 - (A) $\frac{14}{3}$
- (B) $\frac{14}{9}$
- (C) $\frac{1}{3}$
- (D) $\frac{70}{3}$
- 30. The ratio in which the plane $\mathbf{r} \cdot (\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}) = 17$ divides the line joining the points $-2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} 5\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$ is
 - (A) 5:3
- (B) 4:5
- (C) 3:10
- (D) 10:3
- 31. If surrounding air is kept at 20 °C and body cools from 80 °C to 70 °C in 5 minutes, then the temperature of the body after 15 minutes will be
 - (A) $54.7 \,^{\circ}\text{C}$
- (B) 51.7 °C
- (C) 52.7 °C
- (D) 50.7 °C
- 32. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6
P (X)	k	3k	5k	7k	9k	11k	13k

then $P(X \ge 2) =$

- (A) $\frac{1}{49}$
- (B) $\frac{45}{49}$
- (C) $\frac{40}{49}$
- (D) $\frac{15}{49}$
- 33. Give that $f(x) = \frac{1-\cos 4x}{x^2}$ if x < 0 = a if x = 0 $= \frac{\sqrt{x}}{\sqrt{16 + \sqrt{x} 4}}$ if x > 0,

is continuous at x = 0, then a =

- (A) 16
- (B)
- (C) 4
- (D) 8

2

- 34. The area of the region bounded by the *y*-axis, $y = \cos x, y = \sin x$, when $0 \le x \le \frac{\pi}{4}$, is
 - (A) $\sqrt{2}$ sq. units
 - (B) $2(\sqrt{2}-1)$ sq. units
 - (C) $(\sqrt{2}-1)$ sq. units
 - (D) $(\sqrt{2} + 1)$ sq. units
- 35. Given three vectors \overline{a} , \overline{b} , \overline{c} , two of which are collinear. If \overline{a} + \overline{b} is collinear with \overline{c} and \overline{b} + \overline{c} is collinear with \overline{a} and $|\overline{a}| = |\overline{b}| = |\overline{c}| = \sqrt{2}$, then $\overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{c} + \overline{c} \cdot \overline{a} =$
 - (A) -3
- (B) 5
- (C)
- (D) -1
- 36. In a triangle ABC, with usual notations $\angle A = 60^{\circ}$, then $\left(1 + \frac{a}{c} + \frac{b}{c}\right) \left(1 + \frac{c}{b} \frac{a}{b}\right) =$
 - (A) 3
- (B) $\frac{1}{2}$
- (C) $\frac{3}{2}$
- (D)
- 37. If y = 4x 5 is tangent to the curve $y^2 = px^3 + q$ at (2, 3), then
 - (A) p = -2, q = 7
- (B) p = 2, q = -7
- (C) p = 2, q = 7
- (D) p = -2, q = -7
- 38. Which of the following statement pattern is a contradiction?
 - (A) $S_4 \equiv (\sim p \land q) \lor (\sim q)$
 - (B) $S_2 \equiv (p \rightarrow q) \lor (p \land \sim q)$
 - (C) $S_1 \equiv (\sim p \lor \sim q) \lor (p \lor \sim q)$
 - (D) $S_3 \equiv (\sim p \land q) \land (\sim q)$
- 39. Let $\cos (\alpha + \beta) = \frac{4}{5}$ and $\sin (\alpha \beta) = \frac{5}{13}$,

where $0 \le \alpha$, $\beta \le \frac{\pi}{4}$, then $\tan 2\alpha =$

- (A) $\frac{20}{7}$
- (B) $\frac{56}{33}$
- (C) $\frac{19}{12}$
- (D) $\frac{25}{16}$
- 40. If the position vectors of the points A and B are $3\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} 2\hat{j} 4\hat{k}$ respectively, then the equation of the plane through B and perpendicular to AB is
 - (A) 2x + 3y + 6z + 28 = 0
 - (B) 2x + 3y + 6z 11 = 0
 - (C) 2x 3y 6z 32 = 0
 - (D) 2x + 3y + 6z + 9 = 0

MHT-CET 2022 Question Paper 6th August 2022 (Shift - I)

- The particular solution of the differential 41. equation $\frac{dy}{dz} - e^x = ye^x$, when x = 0 and y = 1 is
 - (A) $\log\left(\frac{y+1}{2}\right) = e^x 1$
 - (B) $\log (y-1) = e^x 1$
 - (C) $\log 2(y-1) = e^x 1$
 - (D) $\log\left(\frac{y+1}{2}\right) = \frac{e^x}{2} \frac{1}{2}$
- 42. If the standard deviation of first n natural numbers is 2, then the value of n is
 - (A) 6
- (B) 7
- (C) 5
- (D)
- If a, b, c are position vectors of points A, B, C 43. respectively, with $2\overline{a} + 3\overline{b} - 5\overline{c} = \overline{0}$, then the ratio in which point C divides segment AB is
 - 3:2 externally
- (B) 2:3 externally
- 3:2 internally (C)
- (D) 2:3 internally
- The second derivative of a sin³t w.r.t. a cos³t at 44. $t = \pi/4$ is
 - $(A) \quad \frac{-4\sqrt{2}}{3a}$

- 45. $\int_{0}^{3} \frac{\log x}{x} dx =$
 - (A) $\frac{1}{2} \log 6 \log 3$ (B) $\log 6 \log \frac{3}{2}$
 - (C) $\frac{1}{2} \log 6 \log \frac{3}{2}$ (D) $2 \log 6 \log \frac{3}{2}$
- 46. With reference to the principal values, if $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$, then $x^{100} + y^{100} + z^{100} =$ (A) 1 (B) 2 (C) 3 (D) 6

- For the differential equation $\left[1 \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}} = 8\frac{d^2y}{dx^2}$

____ respectively. has the order and degree

- (A) 2 and 6
- (B) 2 and 3
- (C) 2 and 2
- (D) 2 and 1
- The angle between two lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$ 48.

and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$ is

- (A) $\cos^{-1}\left(\frac{4}{9}\right)$ (B) $\cos^{-1}\left(\frac{1}{9}\right)$
- (C) $\cos^{-1}\left(\frac{2}{9}\right)$ (D) $\cos^{-1}\left(\frac{5}{9}\right)$

- If $f(x) = \frac{a^x a^{-x}}{a^x + a^{-x}}$, where a, x satisfy the necessary conditions, then $f^{-1}(x) =$

 - (A) $\frac{1}{2}\log_a\left(\frac{x}{1-x}\right)$ (B) $\frac{1}{2}\log_a\left(\frac{1+x}{x}\right)$
 - (C) $\frac{1}{2}\log_a\left(\frac{1+x}{1-x}\right)$ (D) $\frac{1}{2}\log_a\left(\frac{2+x}{2-x}\right)$
- 50. For a Binomial distribution, n = 6, if 9P(X = 4) = P(X = 2), then q =
- (C) $\frac{1}{4}$