## MATHS

## Parabola Worksheet for MAH MCA CET 2025

For students preparing for MCA Entrance Exam.

- 1. The focus of the parabola  $y^2 x 2y + 2 = 0$ 
  - A. 3/4
  - B. 5/4
  - C. 4/5
  - D. 1/5

2. Find the co-ordinate of the point on the parabola  $y^2 = 8x$  and whose focal distance is 4.

- A. (2, 4)
- B. (2, +4)
- C.  $(2,\pm 4)$
- D. (-2,±4)

3. Write the parametric equations of the parabola  $(y-1)^2 = 12(x+1)$ 

- A.  $x = 3t^2 1$  and y = 6t + 1
- B.  $x = 3t^2 + 1$  and y = 6t 1
- C.  $x = 3t^2 1$  and y = t + 1

4. The position of point (-1,7) lies relative to the parabola  $y^2 = 12x$  is

- A. Outside
- B. Inside
- C. On
- D. None of these

5. The length of the latusrectum of the parabola  $x^2 - 4x - 8y + 12 = 0$ 

- A. 4
- B. 6
- C. 8
- D. 10

6. The point of the parabola  $y^2 = 18x$  for which the ordinate is three times the abscissa, is

- A. (6,2)
- B. (-2, -6)
- C. (3,18)

## D. (2,6)

7. The equations of the parabola with vertex at the origin and directrix y = 2 is

- A.  $y^2 = 8x$
- B.  $y^2 = -8x$
- C.  $y^2 = \sqrt{8}x$
- D.  $x^2 = -8y$

8. If a focal chord of the parabola  $y^2 = ax$  is 2x - y - 8 = 0, then the equation of the directrix is

- A. x + 4 = 0
- B. x 4 = 0
- C. y 4 = 0
- D. y + 4 = 0

9. If the line x + y - 1 = 0, is a tangent to the parabola  $y^2 - y + x = 0$ , then the point of contact is

A. (0,1)
B. (1,0)
C. (0,-1)
D. (-1,0)

10. The point at which the line y = mx + c touches the parabola  $y^2 = 4ax$  is

| A. | $\left(\frac{a}{m^2}, \frac{2a}{m}\right)$  |
|----|---------------------------------------------|
| B. | $\left(\frac{a}{m^2},-\frac{2a}{m}\right)$  |
| C. | $\left(-\frac{a}{m^2},\frac{2a}{m}\right)$  |
| D. | $\left(-\frac{a}{m^2},-\frac{2a}{m}\right)$ |

11. The focal distance of a point on the parabola  $y^2 = 8x$  is 4. Its ordinates are

- A. ±1
- B.  $\pm 2$
- C. ±3

State WhatsApp Channel: <a href="https://whatsapp.com/channel/0029VaofMcx30LKJH4W9Ev2W">https://whatsapp.com/channel/0029VaofMcx30LKJH4W9Ev2W</a>

D. ±4

12. What is the slop of the normal at the point  $(at^2, 2at)$  of the parabola  $y^2 = 4ax$ ?

- A.  $\frac{1}{t}$
- B. t
- C. -t
- D.  $-\frac{1}{t}$
- 13. The equation of directrix of the parabola  $x^2 + 4x + 4y + 8 = 0$ 
  - A. y = -1
  - B. y = 1
  - C. y = 0
  - D. y = 3/2

14. The value of k for which the line x + y + 1 = 0 touches the parabola  $y^2 = kx$  is

- A. -4
- B. 4
- C. 2
- D. -2

15. The tangent to the parabola  $y^2 = 4x$  at the point (1,2) and (4,4) meets on the line

- A. x = 3
- B. x + y = 4
- C. y = 3
- D. None of these

16. The number of tangents to the parabola  $y^2 = 8x$  through (2,1) is

A = 0

- A. 0 B. 1
- D. 1 C 2
- C. 2 D. None of these

17. If the point P (4, -2) is one end of the focal chord PQ of the parabola  $y^2 = x$ , then the slop of the tangent at Q is

- A. -1/4
- B. 1/4
- C. 4
- D. -4

18. If the line x - 1 = 0 is the directrix of the parabola  $y^2 - kx + 8 = 0$ , then one of the values of k is

- A. 1/8
- B. 8

- C. 4
- D. 1/4

19. Find the equation of the parabola with focus (2,0) and directrix x = -2.

- A.  $y^2 = 4x$
- B.  $y^2 = 3x$
- C.  $y^2 = 8x$
- D.  $y^2 = 10x$

20. Find the equation of the parabola with vertex at (0, 0) and focus at (0, 2).

- A.  $x^2 = 8y$
- B.  $x^2 = 4y$
- C.  $x^2 = 2y$
- D.  $x^2 = 6y$

## **Answer Key**

| 1. B  | 2. C  | 3. A  | 4. A  | 5. C  | 6. D  | 7. D  | 8. A  | 9. A  | 10. B |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 11. D | 12. C | 13. C | 14. B | 15. C | 16. A | 17. C | 18. C | 19. C | 20. A |

