MATHS

Ellipse Worksheet for MAH MCA CET 2025

For students preparing for MCA Entrance Exam.

1. The locus of the foot of the perpendicular from any focus upon any tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

A.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

A.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

B. $x^2 + y^2 = a^2 + b^2$
C. $x^2 + y^2 = a^2$
D. None of these

C.
$$x^2 + y^2 = a^2$$

2. The line $x = at^2$ meets the ellipse $\frac{x^2}{v^2} + \frac{y^2}{b^2} = 1$, in the real point, if

A.
$$|t| < 2$$

B.
$$|t| \leq 1$$

C.
$$|t| > 1$$

D. None of these

3. An ellipse has _____vertices and _____foci.

- A. two, one
- B. one, one
- C. one, two
- D. two, two

4. The locus of mid-points of the line segments joining (-3, -5) and the points on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is:

A.
$$9x^2 + 4y^2 + 18x + 8y + 145 = 0$$

B.
$$36x^2 + 16y^2 + 90x + 56y + 145 = 0$$

C.
$$36x^2 + 16y^2 + 108x + 80y + 145 = 0$$

D.
$$36x^2 + 16y^2 + 72x + 32y + 145 = 0$$

5. Let be θ the acute angle between the tangents to the ellipse $\frac{x^2}{9} + \frac{y^2}{1} = 1$ and the circle $x^2 + y^2 =$ 3 at their point of intersection in the first quadrant. Then $tan\theta$ is equal to:

A.
$$\frac{5}{2\sqrt{3}}$$

6. Find the coordinates of foci of ellipse

$$\left(\frac{x}{25}\right)^2 + \left(\frac{y}{16}\right)^2 = 1$$

- A. $(\pm 3, 0)$
- B. $(\pm 4, 0)$
- C. $(0, \pm 3)$
- D. $(0, \pm 4)$

7. Find the coordinates of foci of ellipse

$$\left(\frac{x}{16}\right)^2 + \left(\frac{y}{25}\right)^2 = 1$$

- A. $(\pm 3, 0)$
- B. $(\pm 4, 0)$
- C. $(0, \pm 3)$
- D. $(0, \pm 4)$

8. The length of the latus rectum of an ellipse is one third of the major axis, its eccentricity would be

9. If the latus-rectum of an ellipse is one half of its minor axis, then its eccentricity is

16. Tangent are drawn from the point (4,2) to the curve $x^2 + 9y^2 = 9$, the tangent of angle between the tangents:

D. 12

- 10. The minimum length of intercept on any tangent to the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ cut by the circle $x^2 + y^2 = 25$ is:
- A. $\frac{3\sqrt{3}}{5\sqrt{17}}$

B. 9

B. $\frac{\sqrt{43}}{10}$

C. 2

C. $\frac{\sqrt{43}}{5}$

D. 11

- D. $\sqrt{\frac{3}{17}}$
- 11. The point on the ellipse $x^2 + 2y^2 = 6$, whose distance from the line x + y = 7 is minimum is:
 - A. (2,3)
 - B. (2,1)
 - C. (1,0)
 - D. None of these
- 12. If the 2x + 3y = 10 and 2x 3y = 10 are tangents at the extremities of a latus rectum of an ellipse; whose centre is origin, then the length of the latus rectum is:
 - A. $\frac{110}{27}$
 - B. $\frac{98}{27}$
 - C. $\frac{27}{100}$
 - D. $\frac{120}{27}$
- 13. The area of bounded by the circle $x^2 + y^2 = a^2$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the area of another ellipse having semi-axes:
 - A. a + b and b
 - D. None of these
 - A. a + b and b

 B. a b and a

 C. a and b
- 14. If area of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ inscribed in a square of side length $5\sqrt{2}$ is A, then $\frac{A}{\pi}$ equals to:
 - A. 12
 - B. 10
 - C. 8
 - D. 11
- 15. Any chord of the conic $x^2 + y^2 + xy = 1$ passing through origin is bisected at a point (p,q), then (p+q+12) equals to:
 - Ä. 13
 - B. 14
 - C. 11

Answer Key

1. C	2. B	3. D	4. C	5. B	6. A	7. C	8. A	9. B	10. A
11. B	12. C	13.B	14. A	15. D	16. C				

